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0. Introduction ;?
An operator-stable (OS) probability measure u on a normed finite-dimensional real f;t
vector space V is the limit distribution of operator normed and centered sums of =
o

a sequence of i.i.d. random vectors in V. The classical stable laws on IRl are :i:
a special case. TIf u is full and operator stable, then u is infinitely divisible i{
;i:

so if i is the ch.f. of u, then for t>0, 0% is the ch.f. of an infinitely divisi-
ble measure ut. The role of the index in the one-dimensional case is played by an

invertible linear operator B on V called the exponent of p. If we define

L. _p (ool : .

t = exp{@nt)B} = Zj=0 31 B, then B is an exponent for p if
t B

(D) u o=t uxd(b(t)) , t>0,

where 5(b(t)) is the unit mass at b(t) €V and tBu =ut—B. In [7] it was proved
that full 0S distributions always have at least one exponent.

An exponent of a full 0S law u determines much of its structure. (See [2] and
[7] for the results which are now described.) 1In general U has both a Gaussian
component ug and a Poisson component up. These components are concentrated on
independent subspaces determined by the exponent B. To be precise let f(x) de-
note the minimal polynomial of B. Then f(x) =g(x)h(x) where the roots of g have

real parts equal to ! while those of h have real parts greater than %. The Gaus-

sian component ug is concentrated on Vg =kernel(g(B)) while up is concentrated on

f d 0S V and V
Vp =kernel(h(B)). Furthermore V=V8°Vp, Ug and “p are full an on 2 P

ictio of B toV_ and V o~

respectively. The exponents of L and Up are the restrictions g b T
VN

respectively. Now let M denote the Lévy measure of u. The exponent determines a f{:
- ..'ﬂ

major part of the structure of M. From (1) upon noting that t*M is the Lévy measure u{l

of ut and that tBM1=Mt-B is the Lévy measure of tBu, one sees that t-M =tBM. This

fact can be used to show that if A is a Borel subset of Vp. then

(2) M(A) = fLMx(A)K(dx)
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2

where K is a finite measure on a Borel subset L of the unit sphere U in V and M is
P 3
. . B , .
concentrated on the single orbit { t'x: t >0} determined by x. The Lévv measure M
: X

also satisfies the condition that t-MX=tBM and as a result,
X

Mx{th: t>s} = 1/s, s>0,

(i.e. Mx(A) =f°(;IA(th)t_2dt). From (2) it follows that the support of M is the
union of orbits of tB. Each orbit begins ‘at the origin and extends to infinitvy
(i.e. lim th=O and lim HthH =»), The shape of these orbits is determined by

t-0 £ 00
the exponent B. 1In particular cases orbits can be straight lines (B =XI), half

1 -1

of a parabola (B=(é 2), V=IR2) , or spirals (e.g. B=(1 l) =1 +Q where Q+Q* =0

Q

so t° is a rotation). The expression for Mx above shows that the tail behavior

of M along orbits is determined by B. The measure K assigns weights to the orbits

and determines which orbits are included in the support of M. Together B and K
determine M. But, in general B and K are not unique. Is there a reasonable way

to choose a particular exponent and measure K? The set of exponents depends on

the amount of symmetry possessed by U. Call a linear operator A on V a symmetry .

of u if for some a ¢V, u=Au*8(a). It is natural to expect that a symmetry of u

should take orbits into orbits while leaving K invariant. (See Theorem 7 below.)

B
In particular, if BA =AB, then At x =tBAx (since tB is a power series in B) so |

v rw
RN
et e

orbits are taken by A into orbits. Furthermore the requirement that B commutes

oy -

=
:. with every symmetry tends to pick out exponents with nice properties whenever

possible. (See Theorems 4 and 5.)

' Example. Suppose that u is the standard Gaussian measure on IRd . If Xand Y

. are i.i.d. u, the measure corresponding to X+Y is u*u =21,2u. One suspects (and !
easily verifies) that %I is an exponent for u. Suppose that S is a skew operator, b |
\} that is, that S+S*=0. For each t >0, ts is orthogonal and so tsu =p, i.e. tS is

?." a symmetry of u. It follows that %I +S is also an exponent for u, for any skew

L. operator S (see Theorem 1 below). Thus operator stable measures may have many

e

Ve




cvponents; the number of exponents depends on the size of the collection of sym-
metries of u. Does an operator stable measure have a "simplest" exponent?

A lemma of Schur's ([6], p. 173) suggests a possible answer. This lemma
savs: '"Let F be a fam.ly of linear operators on a Hilbert Space H and suppose
that the only closed subspaces which are invariant under every operator in F
are 05 and H. TIf A is a self-adjoint linear operator on H that commutes with
vvery operator in F, then A=cI for some scalar c.'" (As usual, I denotes the
identity operator.) Schur's Lemma suggests that the "simplest" exponent would
be one which commutes with a large collection of operators. In this example, %I
is the only exponenet of u which commutes with every symmetry of p. We will
show below that there is always an exponent of U which commutes with all the
symmetries of u. (Theorem 2)

Qur results on commuting exponents are applied to simplify the representation
ot the Lévy measurc of an 0S law in section 3. There we define a new norm. The
unit sphere relative to this norm plays the role of L above. The corresponding
mixing measure K does not depend on the choice of an exponent (Theorem 6). This
representation provides a simple relationship between the symmetries of 11 and
those of K. These results complement those of Kucharczak [5], Jurek [3], and
lHudson-Mason [2].

1. Preliminaries

Let u be a full OS probability measure on a finite dimensional real vector
space V. GL(V) denotes the set of all invertible operators on V. For AeGL(V),
we define Au =u°A-l. Two groups of interest in connection with u are the symmetry
group

S(u) = {AeGL(V): Au*§(a) = u for some a eV}
and

G= {AeGL(V): mrsmmt>0,fmrameaev,ut=mmﬂaﬂ.




It is known that S(u) is a compact, normal subgroup of G. For any closed group ¥,

TH will denote the tangent space of H. Thus Ae¢TH if and only if A =1lim (Hn -I)/dn

n-o

where {Hn} cH and {dn} is a real null sequence. We recall that the exponential

maps TH onto the connected component of I in H. CH will denotec the center of H,
that is, those elements of H which commute with every element of H. Recall that
CH is a subgroup of H.

The collection of exponents of U, denoted E(u), is the set of all operators
for which (1) holds. The following result gives a basic fact about exponents.
Theorem 1. Let BeE(u). Then

(i) Every eigenvalue of B has real part 2 ',

(ii) E(u) =B +TS(u).

For a proof of this result see [1] and [7].

Commuting Exponents

In this section we investigate the existence of an exponent which commutes
with every operator in S(u). Such exponents will be called commuting and the
collection of commuting exponents will be denoted by Ec(u).

Proposition 1. Let A<S(u) and Be E(U). Then aBa™l ¢ E(u). Moreover, if S(u)

.
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is discrete, the unique exponent B is commuting.

Proof. We have Au =u*3(a) and

-1
eABA Ay 8 (ab (1)) .

[

()" = aut = aceBurs (b)) = AtPurS(ab(e))

Hence

-1 -1
ut = tABA u*§(Ab(t) - ta + tABA a)

and ABA-1 € E(u). Now if S(u) is discrete, TS(u) =0 and B is the unique exponent.
Thus ABA_l =B and B is commuting. (QED)

The following example shows that not all exponents are commuting.

I e T
"‘_V."'i-}f‘.'-"}-_‘.‘



2
Example. Let u be the symmetric Cauchy distribution on R™. Then T ¢ E(u) and S(u)

is the full orthogonal group. Hence TS(L) consists of the skew symmetric operators.
10

By Theorem 1, E(u) =1 +TS(u) so B = [_i i] is an exponent. Also A = [O _ﬂ £eS(L). A

direct computation shows that AB #BA. Furthermore, A does not map orbits into other orbits.

The main result of this section is that commuting exponents always exist.

Theorem 2. EC(U) is non-empty-.

Proof. Let H be a Haar probability measure on the compact group S(u), and let

B« E(u). Define
-1
M= f sBs "dH(s).

Since E(u) is closed and convex by Theorem 1 and closed under conjugation by

elements of S(u) by Proposition 1, MecE(u). If AeS(uw), then by the invariance

property of Haar measure

aa™l = [ ases laThau(s) = (As)B(AS) NdH(s) = [ sBs TdH(s) = M.
S(w) S (1) s(w)
Thus Me E_(1). (QED)

The collection of all commuting exponents is characterized in our next result.
Theorem 3. Suppose B¢ Ec(u). Then EC(U) =B + TCS(u).

Proof. Assume B sEC(U), Using the relation between groups and their tangent
spaces one readily verifies the equivalence of the following statements.
(i) B-E G,

- BeTS(K) and B - B commutes with every element of S(u).

==

(ii)
(iii) For all t, exp{t(E-B)}e CS(u), and

(iv) B - B eTCS(). (QED)

Corollary. EC(U) =E(L) if and only if TS(u) =TCS(u).

We now examine the extent to which the structure of a commuting exponent is deter-

mined by the 'size" of S(u).
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ot Theorem 4. Let B eEc(u). If the only proper subspace of V invariant under S(yu)
b T
. -1 . o o .
P.-_~ is 0, then B = AI +WQW , where W is positive definite and Q is skew symmetric.
2 2 -1 2
Furthermore either Q=0 or Q =WQ™W ~ =-3"1 for some 2 >0.
Proof.  Since $(u) is compact, there is a positive definite operator W and a

closed subgroup G of the orthogonal group such that
(1) = wow T,

' follows that s(w’lu) =G. Since B€E (u), B =Wl ¢ E (w"lm. Write B, =B, +B
c 0 c 0 1 2

where Bl = 1';(BO+BO"<) is self-adjoint and 32 =1:(BO-BO*<) is skew-symmetric. Since

B, < E (wvlu), AB, =B.A for A<G., Take adjoints to see that B_*A* =A%B _* for Ac<G.
N "¢ 0 0 0 0

But every operator in G is orthogonal so G = {A*:A €G}. Thus

* = *
ABO BO A, AeG.

I follows that every operator in G commutes with B, which is self-adjoint. Now

1

bv hvpothesis the only proper subspace of V invariant under S(u) and hence under

G is 0. Bv Schur's Lemma, Bl = I for some real number A. Now consider 82.

Since B2 is skew-symmetric, it is normal and thus its minimal polynomial is the

product pl(x),..., pk(x) of distinct irreducible polynomials. TIf k>1, then

ker pl(Bz) is a proper subspace of V which is invariant under G contrary to our

2 2
hvpothesis. Thus k =1 and the minimal polynomial of B2 is either x or x~ +8

for some 3 >0. (A skew-symmetric operator has purely imaginary

. B
a
." .
.

2 2
e visenvalues). If it is x, then BZ= 0; otherwise , B2 =~R37I, From BO= B1+ B,= AT +B,, we
:;. ~btain upon setting O =By,
:‘.::' 1 .
- WlBW = 31 + 0
|.'-.'
‘ or B= I +WQW-1. Finally B ¢ E(u) so the real part of every eigenvalue of B is
::{-: not less than %, i.e. A 2%, (QED)
-" LY
o
~ Corollary. If in addition to the hypothesis of the theorem, either B is diagona-
f..-' lizable or dim V is odd, then 3= ATI.
7-\'
o
R
D‘\‘
o
~
v;-;
I.:'
.'-:.:'..'--.’-,'-.,'....\.-\..-._ e et e e m e e e e e e e
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Proof. First suppose B is diagonalizable. Let v be an arbitrary eigenvector of

By Theorem 4, B = AI +wa—l so v is an eigenvector

1.2

B so Bv =)\Ov for some real ,\0.
)7y = (x0->.)2v. Buc

of WO_W-I. In particular WQW-lv = ()\0-/\)‘1. Hence (WQW

- -1.2
wow L =0 or (WQW 1) =-82I. In either case it follows that \O=)\. Since B is

diagonalizable, B= Al. Now suppose dim V is odd. Since Q is skew symmetric,

det Q = det Q* = det(-Q) =-det Q,

2
so 1) is singular. Hence Q #—BZI and therefore Q =0. (QED)

A slight refinement of the preceding theorem is given in

Theorem 5. Suppose B« Ec(u) has p real eigenvalues Al,..., Xp with corresponding

eigenvectors Viseees vp. If {Avi: AeS(u) 1<i<p} spans V, then B is diagonali~

]

n
>
1]
>

-
=)
1]

>
—

zable with spectrum D‘l""’ Xp}. Thus if A; =... 0

Proof. For AeS(h), BAvi =ABvi = AiAvi, so Avi is an eigenvector of B with eigen-

e & e

value T“i' Hence there is a basis of V consisting of eigenvectors of B and so B is

diagonalizable. (0ED)

2
Corollarv. 1In R® if BeEc(u) and if there is a reflection A € S(u), then B is
self-adjoint.

Proof. Select orthonormal vectors vy and v2 so that Av1 =vl and sz =-v,. Then

ABv1 =Bv1 and ABv2 =-Bv2, S0 Bvl =>\lvl and sz =>\2v2 where )\1 and )\2 are real.

(QED)

3. The LEévy measure

ST, 7

i e N e i T S e e - o o
ke

[n this section we discuss the relationship between commuting exponents and

el

the representation of the Lévy measure of W. Since U is infinitely

divisible, one can write the characteristic function of U in the canonical form

L
e ‘T‘Tler‘—! .vrl‘r"w.

0(y) = exp{i<y,a> -4<y,Iy> + Jo(x,y)M(dx)}

-y
-
PR IR Y S

where a ¢V, I is a non-negative definite self-adioint oncratar. M je A
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d-finite measure satistying
2
F X A ax) < o,
and
\ . i<x,y>
! = < - - ———
O(x,y) = exp{i<x,y>} -1 Ticx x5 }

For 0OS measures it has been shown that one can further decompose the Lévy measure

1 as follows. For an exponent B of u set L_ = {[x||=1 and |lth|l>l for all

B

t > 1° and define the mixing measure KB on the Borcl subsets A of LB by

KB(A) = M({th: xe A, t > 11,

. . . B
Thus KB assigns mass to the particular orbits {t"x: t-0}. Note that both Lr

and KB depend on the choice of exponent B. In terms of KB the Lévy measur

M is given by

. _ oo B .. -2
(3) M(S) = ILBIO Is(t x)t dtdKB(x)

(See 127 and [3].) 1t was neccessary to introduce the subset L, of U since for

4

B

<ome cxponents, orbits may intersect the unit sphere more than once.

We now introduce a new norm ]![‘lll which depcnds on the particular 0S law
but not on the choice of exponent. The unit sphere U'={v: [11v]11=1} induced by
this norm will intersect cach orbit once and so may play the role of LB' As
above we define a mixing measure K on the Borel subscts A of U' by
K(\):”‘er: XA, t:l}. This measure K also does not depend on the choice of
cxponent and the representation (3) of the Lévy measure M in terms of K is
still valid. The ncw norm leads to a system of "polar' coordinates with nice
propertics. (cf. Jurek [4]).

For xV, and R<t(u) define |||x|]] = fifs(“)lIpth|lH(dg)t-ldt where H
apgain denotes Haar measure on S{1) and ||'|l is the original norm on V.
Proposition 3. Tt 1 is full and 0S on V, then

() Pt

does not depend on the choice of B E(p),

) Lot ik o norm oon v,
() for Asea, VAxE = T xg
{7" > | B ! 1 s 3 3 3

7 ) t (1e"x! | is strictly increasing on (0,¢) for cach x#0, and

wy

e

L5
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. &
) the map B

tU'x(0,2)?VN{C} defined by i

when U'x(0,~) has the product topology.

Proof. ().

0
B~Bg B—BOB

all t£-0, Bot =g 0 Differentiate to see that B

sequently that tB=tB-BOtB0.

measure to obtain the equalities

Let Be E(1) and let B ¢ Fc(u).

By Theorem 1, B-—BO

9 commutes with B-B

el 5= fo s lgt®x] £ H(dg)at
S(u
1
= J e PocPox e mcag)ar=[i|x]li, |
0 s(u) 0

This proves (Y) and allows us to omit the subscript B.

(v) It follows from (Zv) that @B

V 0} lies on some orbit,f*B is "onto".

easily checked. To show le

¢(x). U', ¢(x)'0 and x=Q(x)B£(x).

e e e T S
.-.... . PR R

. B RESRS
T .ndhk - {Lthﬂﬁh

is one-to-one.
The continuity of ¢B
is continuous write @

Suppose that

'-'-'-. n K
'- .

(t{) This is obvious.
(£77) Let A¢ S(u). By (¥)
we may assume that B¢ Ec(u). Then
. L B -1
llaxii=) ] lleeanl € hucapas
0 S(u
! B -1
=/ I( ) llgat x| £ H(dg)de={||x|l|.
Jg S(u
(Zv) Suppose that O<r <s . Then
1
e )= JL g (er)Px || £ H(dg)at
u
r B, -l
= | f( )||gu x|l u H(dg)du
0 S(u
s B -1 B
. < fo é( ) llgu”x|| u” H(dg)du=|[|s"x]]}.
U

*yf o0,
n

'_.'-.."’) ._’ -'-'-‘.".-"-‘.-_-"-._-~

-
0 T A .._..’.

0

For x ¢V, use the invariance property of Haar

(X) (€(x),0(x)) so that

(x,t)=th is a homeomorphism

« TS() so for

and con-

Since every point in

is well-known and

Assume some subscquernce

" maa o -
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“(x ,) tends to infinitv, Then since the cigenvalues of B have positive real
n

L B . )
parts, ‘xn,,‘= ”Q(xn,) U(xn,)li*v contrary to the converpgence of X It tollows

that (((xn), f(xn)) is a bounded sequence in U'x(0,"). Let (((xn,), Q(xn,)) be anv

convereent subsequence and let (fo, L0)=lim(f(xn.), L(xn,)). Then
, o B B,
x=lim xn,—llm %(xn,) e(xn')—CO (0-

Since :B is one-to-one, L(x)=co, and e(x)=fo. Thus every convergent subsequence

of (((xq), t(xn)) has the same limit, namely (£(x), (x)). This proves that
-1

, Ls continuous. (QED)
1ol

ihe proot-that .é' i< continuous was given above for the sake

ot comnioteness, c.f. [4].

Part (') of Proposition 3 implies that each orbit intersects U' exactly
once. The fact that U' is closed and that @B is a homeomorphism is useful in
proving weak convergence results.

Theorem 6. Let u be full 0S with Lévy measure M and let B¢ E(;i). Let F and

E be anv Borel subsets of V\{0} and U' respectively. Then .
(4) MF)={ 71 (sPx)s %dsK(dx)
vt o F

where K is a finite Borel measure on U' and

ks

I ) . B R
o (5) K(E)=Mt x:xa—E,t:}}
s
d The measure K does not depend on the choice of B¢ EGi).
o
A Proof. The proof of (4) and (53 is similar to that of (3) in [27 or [31 and is
-.“:- . .
W theretore omitted,
‘.-. .
:. 'he proof that K does not depend on the choice of exponent will
- involve  un ecasy lemma, ‘
o Femma 3.1 let ¢ - S(i) and B ¢ E(u). If gB = Bg, then gKB = K.
| S
®
-
e
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‘-
*
g
o
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Proof. [Let D be any Borel subsct of U'. ‘Then
gk, (M) = K (271 (D))
B B**
- MtPx: x e gLy, 1)
= M{th_lx: Xxeb, t>1}
=M P x e b, >1h
B
= (gM({t'x: x ¢ D, t >1}H.
But g ¢ S(u) and hence gM = M. Thus
B
gKg(D) = M{t7x: x € D, t > 1} = Ky(M).
Now let A be any Borel subset of VA{0}. Then if
0 B —2
. M(A) =1 S IA(t x)t KB (dx) dt
0 u
¢ =1 Ky ((t7°A) nU') t “dt.
0

" '

. A"‘A'

R \CEC ™ o

*, LALS [

[ W et
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R AR A

LAWY ST

l.et BO B = KBO.
subsect of U} and put A = {sBx: X €D, s>1}. Then

€ Ec(u). It suffices to prove that K

- ’.\'..
-

(OLEM

So let D be any Borel
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(¢ ift <1

(t'BA) n U= 1
| D if ¢t

[\
[

lience
o -B
KB(D) = M(A) = S K ((t

OBO

Op) n Uyt~ 24dt.

B-B
Rut B() ‘ Ec(u) SO B() commutes with B—BO. Furthermore t 0. SG10)

and t U' = U'. It follows from Lemma 3.1 that |

B-B i
Ot Bayy n U

-t

-B
K, ((t "A) nU") K, ((t
Bo Bo
_BO
Ky ((t CA) n UM).
0

Yfrv
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o
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(M g an 4
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Therefore,

s

2

e
'."f

o -B a2
S Ky ((£7°A) n Uyt “at.

K, (M)
B 0

Q"
l"

o0 -2
fl KBO(D)t dt = KBO(D). (OED)
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Remark. There is a converse to Theorem 6. If B is an 0S exponent, and if K

is a finite Borel measure on U' o Vp, then the measure M defined by

L _,2
ME= [ 7 1_(s"x)s “dsK(dx)
' F
U 0
is the Levy measure of some 0S law with exponent B. Again see [2] or {3].
In [7] Sharpe characterized the set of 0S exponents, i.e. those operators
which are the exponent of some 0S law.
We now consider the relationship between S(K), the symmetry group of the

measure K in Theorem 6, and S{u).

Theorem 7. Let p be a full 0S measure on V. Then S(u). S(K).

Proof. Let A ¢ S(u). Since by Proposition 3, ||| Ax|]| = {|lx|]] » AU'=U". Since

K does not depend on the choice of an exponent, we may assume B‘:EC(L)-

Then S{1) © srk) follows from lemma 3.3. (OED)
The following cxample shows that even if an 0S measurc u has no

Gaussian component, if the original norm on V is used and if M is

defined as in (3}, then S(K) may be much larger than S(jit) even though K is

full. (To scc that in this example u has no Gaussian component, notc that no

cigenvalue of R has real part equal to ':.)

_ 10 ; . . . 2
Example. Take B = [0 2]. Then LB is the unit circle in R". Let K be the Lebesgue

measure on the circle. Then K is full and S(K) is the orthogonal group. Define M
(and hence L) in terms of K and B using equation (3). Then y is a full 0S measure
with B e E(u) (see [2]). We now find S(u). First note that S(u) is closed and V=R2
s0 1f 5(j) were not discrete, $(u) would be conjugate to the orthogonal group. Then
by Theorem 4, B would have conjugate complex eigenvalues. Hence S(u) is discrete, and

B - Ep(u) by Proposition 1. Now suppose D==[i :]e S(u). Then since B¢ Ec(u) BD = DB and

so ¢ =b=0. Since S(u) is a compact group, the fact that p" £S(u) for all n shows

tal =id! =1. A direct computation now shows that S(u) =S(M) = {+ T, [-é ?]. [é _?]}.
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